A nonlocal convection–diffusion equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Nonlocal Convection-diffusion Equation

In this paper we study a nonlocal equation that takes into account convective and diffusive effects, ut = J ∗u−u+G ∗ (f(u))− f(u) in R, with J radially symmetric and G not necessarily symmetric. First, we prove existence, uniqueness and continuous dependence with respect to the initial condition of solutions. This problem is the nonlocal analogous to the usual local convection-diffusion equatio...

متن کامل

Numerical Approximations for a Nonlocal Evolution Equation

In this paper we study numerical approximations of the nonlocal p−Laplacian type diffusion equation, ut(t, x) = ∫ Ω J(x− y)|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x)) dy. First, we find that a semidiscretization in space of this problem gives rise to an ODE system whose solutions converge uniformly to the continuous one as the mesh size goes to zero. Moreover, the semidiscrete approximation shares ...

متن کامل

On a transport equation with nonlocal drift

In [16], Córdoba, Córdoba, and Fontelos proved that for some initial data, the following nonlocaldrift variant of the 1D Burgers equation does not have global classical solutions ∂tθ + u ∂xθ = 0, u = Hθ, where H is the Hilbert transform. We provide four essentially different proofs of this fact. Moreover, we study possible Hölder regularization effects of this equation and its consequences to t...

متن کامل

Analysis of a Nonlocal Poisson-Boltzmann Equation

A nonlinear, nonlocal dielectric continuum model, called the nonlocal modified PoissonBoltzmann equation (NMPBE), has been proposed to reflect the spatial-frequency dependence of dielectric permittivity in the calculation of electrostatics of ionic-solvated biomolecules. However, its analysis is difficult due to its definition involving Dirac delta distributions for modeling point charges, expo...

متن کامل

Asymptotic behaviour for a semilinear nonlocal equation

We study the semilinear nonlocal equation ut = J∗u− u− u in the whole R . First, we prove the global well-posedness for initial conditions u(x, 0) = u0(x) ∈ L(R ) ∩ L∞(RN ). Next, we obtain the long time behavior of the solutions. We show that different behaviours are possible depending on the exponent p and the kernel J : finite time extinction for p < 1, faster than exponential decay for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2007

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2007.07.013